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Abstract

The heat transfer characteristics of Bingham plastics fluids within concentric annular ducts are analytically studied
through the classical finite integral transform technique. In the analysis of the thermal entry region, four types of
boundary conditions are adopted and prescribed either at the inner or outer duct wall, and the flow is considered to be
laminar and fully developed. Local Nusselt numbers are computed along the channel length with high accuracy for
different values of aspect ratios and yield numbers, which are systematically tabulated and graphically presented.
Comparisons with previous works in the literature are also performed for typical situations, in order to validate the
numerical codes developed in this work, as well as to demonstrate that consistent results were produced. © 2001

Elsevier Science Ltd. All rights reserved.

1. Introduction

The analysis of the heat and fluid flow characteristics
involving viscoplastic materials within annular ducts
plays an important role in the design of thermal-hy-
draulic equipment, since there are numerous industrial
applications related to these fluids. Fluids included into
this category are those that follow the Herschel-Bulkley
model or a Bingham plastic model, which present in
their constitutive equations a yield stress, which must be
exceeded in order to start the flow [1,2].

A literature survey reveals that such analyses are
mostly concerned to the flow of viscoplastic materials in
circular tubes and parallel-plates channels [3-10].
Therefore, in this context, in order to fill out the gap
presented in the literature for the heat transfer convec-
tion of Bingham plastic fluids within concentric annular
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ducts, the present work aims at advancing the ideas in
the classical and generalized integral transform tech-
niques and the so-called sign-count method to determine
Nusselt numbers along both, the thermal entry and fully
developed regions, with high accuracy. Four kinds of
boundary conditions are adopted for this thermal
problem, furnishing a broad analysis of the problem.
Numerical results are obtained for different values of
aspect ratios and yield numbers, showing the importance
of the duct geometric configuration and the fluid rhe-
ology on the Nusselt numbers.

2. Analysis

In order to analyze the heat transfer problem of a
non-Newtonian fluid that follows the Bingham plastic
model, one considers steady forced convection in ther-
mally developing, hydrodynamically developed laminar
flow within a concentric annular duct (details in
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Nomenclature

Dy hydraulic diameter;

= 2(Fow — Fiw)

local Nusselt numbers at inner
and outer walls, respectively
prescribed heat fluxes at inner
and outer walls, respectively

Nuiw (Z) y Nuow (Z)

1 1
Diw> 9ow

u(r), U(R) velocity distributions,
dimensional and dimensionless,
respectively

Y yield number; = t9Dn/ tgUay

z,Z axial coordinates, dimensional

and dimensionless, respectively

Greek symbols

7R radial coordinates, dimensional 0(R,Z) dimensionless temperature
and dimensionless, respectively distribution
Fiws> Fow inner and outer radii, respectively 0w (Z) dimensionless average
T(r,z) temperature distribution, temperatures
dimensional 0w (2), Oow(Z) dimensionless temperature at in-
Ty Tow prescribed temperatures at inner ner and outer walls, respectively
and outer walls, respectively o plastic viscosity of the fluid
Uy average flow velocity 70 yield stress
obtaining the velocity field can be found in [11]). Viscous or
dissipation, free convection, and axial conduction effects
are neglected, and physical proper.ties are taken as 0(R,Z) = T(rz)—T. with Ty, = T2, m = 0. (2i)
constant. The duct walls are subjected to different T — T

boundary conditions (see [12] for more details), and the
fluid enters the channel with a uniform temperature, 7..
Then, the mathematical formulation for this convective
heat transfer problem in dimensionless form is written
as:

W(R)Mgz):%{Raegéz)} iny<R<1, Z>0,

(1a)
0(R,0) =0, y<R<I, (1b)
0(y,2)=1-—m, Z>0, (Lc)
0(1,2)=m, Z>0, (1d)

where in the boundary conditions (lc) and (1d), the
coefficient m identifies whether it refers to case A
(m = 1) or to case B (m = 0). In addition, the following
dimensionless groups were used:

e - L (2a-)

(R) = 4?1(]_(1;))2 ’ - DhlzePr’ (2d.¢)
Re:%; Prz%, (2f,g)
0Rz) =T i =T m— 1 (2h)

The solution of the heat transfer problem given by Egs.
(la)-(1d) is obtained through the classical integral
transform technique [13,14]. Then, the complete solution
for the potential 0(R,Z) is obtained by the approach
cited above, for boundary conditions of first kind, in the
form [11]:

/i

0RZ) = 0,(8) + 3 S (R) exp(—4E2);

0,(R) = m+ (12 )11%’ (3a, b)
= W R (R)G, (R) R

N= [ wwurar (3¢,d)

where ,(R) and p, are the eigenfunctions and eigen-
values, respectively, of an appropriate eigenvalue prob-
lem. Fundamental solutions for other types of boundary
conditions are obtained following the same procedure as
applied for boundary conditions of first kind, and are
written as:

00

0(R, Z) = 0u(Z) + 05(R) + >

i=1

Vi(R) exp(—1Z),

==,

(4a)

_ 4Z[m + (1 — m))

R (P

; (4b)
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32[m 4 (1 = m)](1 = y)
(1+9)

{1 s
+4}((117_m(//W lanR)
2520 2] ol

(1—m)

0,(R) =

T InR (second kind), (4c)
0RZ) = 0p(R) + 3 L0, (R) exp(-122), (50)
0,(R) =1 (third kind), (5b)
0RZ) = 0(R) + 3 L0, (R) exp(-122), (6a)
0,(R) = ”;é‘ll(f// ”*)’) _d 5 {"EV;?R (fourth kind).

(6b)

At this point, quantities of practical interest, such as
average temperature and local Nusselt numbers at the
inner and outer channel walls can be determined from
Eqgs. (4a)-(6b) according to their definitions given in
[12]. For the case of boundary conditions of second
kind, the average temperature is determined a priori,
and is given by Eq. (4b).

3. Results and discussion

Computational codes were developed in the FOR-
TRAN programming language and implemented on a
PENTIUM II 400 MHz computer platform. Numerical
results were produced for Nusselt numbers with different
yield numbers and aspect ratios, and by adopting the
four different types of boundary conditions.

In order to validate the numerical code developed in
the present work, and to demonstrate its numerical
consistency, Table 1 shows a comparison of the present
results for Newtonian fluids, by adopting the four types
of boundary conditions, against those presented by Shah
and London [12], in the thermal entry region for the
aspect ratio y = 0.1. From this table, it can be observed
that the results are in excellent agreement, furnishing a
plain direct validation of the computational code de-
veloped in the present work.

3.1. Effect of yield number

Figs. 1-4 present results for local Nusselt numbers
distributions along both the thermal entry and fully

developed regions, for different values of yield numbers
(Y =0, 1, 5 and 10), and aspect ratios (y = 0.1 and 0.9),
corresponding to the four pairs of boundary conditions
adopted. It is verified that in the thermal entry region, an
increase in the Y parameter results on higher values for
the local Nusselt number, for all cases of thermal
boundary conditions analyzed. This effect in the fully
developed region practically disappears, where in gra-
phic scale, the values of Nusselt numbers are coincident.
The influence on the thermal entry region can mainly be
explained through the velocity field presented in [11],
there it can be observed that for increasing Y values, the
plug-flow region increases, as a result the velocity gra-
dients near the walls tend to become more pronounced,
and consequently, the heat exchange is intensified in
such regions, resulting in greater values for Nusselt
numbers. The magnitude of the local Nusselt number
either at the inner or at the outer wall depends on the
position of these velocity gradients, for instance, for
boundary conditions of first kind, considering the aspect
ratio y = 0.1, in the fully developed region the local
Nusselt number presents greater values at the inner wall
than at the outer one, since the velocity gradients are
greater at that wall.

3.2. Effect of channel geometry

Concentric annular duct has two limit configuration
cases, i.e., when the aspect ratio, y — 0, the duct tends to
be represented by a circular tube, and when y — 1, by a
parallel-plates channel. In both situations, the velocity
and temperature distributions become symmetrical. The
aspect ratio effect is evident when Figs. 1 and 4 are an-
alyzed. It can be observed that as the aspect ratio in-
creases, the local Nusselt numbers at the inner and outer
walls tend to the same values, since at higher values of
aspect ratios, for example, y = 0.9, the velocity and
temperature profiles show a certain symmetry, because
of the geometric configuration of the channel.

3.3. Effect of thermal boundary conditions

In all cases of thermal boundary conditions analyzed,
the local Nusselt numbers at the inner and outer walls
either increase or decrease along the thermal entry re-
gion tending to an asymptotic value corresponding to
that of the fully developed region.

In the case of boundary conditions of the first
kind, the local Nusselt numbers at the outer wall
decrease and reach an asymptotic value, whereas at
the inner wall the local Nusselt numbers increase and
reach asymptotic values greater than those at the
outer wall. This can be explained by the fact that the
velocity profile is steeper near to the inner wall than
the outer one [11], leading to greater heat transfer
rates at this region. This effect diminishes as the
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Table 1
Thermal parameters computed from the present analysis for the four types of boundary conditions adopted (Newtonian case and
7 =0.1)
V4 Case 1A Case 1B
Nuyw (Z) Nutow (Z) 0u(Z) Nuyw (Z) Nuow(Z) 0. (2)
1.0E-5 52.340* 0.00282* 80.328* 0.00047¢
- 52.336° 0.00287° 80.324° - 0.00043°
1.0E-3 10913 0.05827 22.257 0.01099
- 10.912 0.05832 22.192 - 0.01094
1.0E-2 0.1661* 5.3590 0.24529 13.761 0.0664* 0.06134
0.1550° 5.3590 0.24530 13.762 0.0664° 0.06131
00 10.459 3.0953 0.74744 10.459 3.0953 0.25256
10.459 3.0950 0.74744 10.459 3.0950 0.25256
V4 Case 2A Case 2B
Nuow(Z) 0w (2) Oow(Z) Nuiw (Z) 0w (2) Oow(Z)
5.0E-5 36.939* 0.027253* 58.0207 0.017254*
36.940° - 0.027252° 58.019° 0.017254° -
5.0E-3 8.0832 0.141895 17.117 0.060238
8.0830 - 0.141892 17.120 0.06024 -
5.0E-2 4.9610 0.074622% 0.383391 12.128 0.100634 0.007462%
4.9610 0.074621° 0.383391 12.128 0.100634 0.007642°
00 4.8342 00 [ 11.906 00 00
4.8340 11.906
V4 Case 3A Case 3B
Nuow(Z) 0w (2) 0u(Z) Nuiw (Z) Oow(Z) 0. (2)
1.0E-2 5.3589* 0.00149* 0.24525% 13.761% 0.00071% 0.06209*
5.3590° 0.00153° 0.24535° 13.762° 0.00032° 0.06122°
1.0E-1 4.1140 0.68398 0.81289 11.561 0.26945 0.36352
4.1140 0.68400 0.81292 11.562 0.26918 0.36295
5.0E-1 4.1135 0.99920 0.99953 11.559 0.86401 0.88153
4.1140 0.99920 0.99953 11.560 0.86398 0.88144
00 4.1135 1 1 11.559 1 1
4.1140 1 1 11.560 1 1
V4 Case 4A Case 4B
Nuiw(Z) Nutow (Z) 0.(2) Nuiw (Z) Nuow(Z) 0. (2)
1.0E-2 0.1932¢ 6.6681% 0.0367322 14.902¢ 0.0409* 0.003634*
0.0340° 6.6460° 0.036254° 14.902° 0.0420° 0.003636°
1.OE-1 8.3142 4.3559 0.324084 11.072 2.77717 0.024624
8.3090 4.3500 0.323770 11.072 2.7780 0.024625
5.0E-1 10.304 3.2714 0.838497 10.460 3.0947 0.032288
10.304 3.2710 0.838450 10.460 3.0950 0.032288
00 10.459 3.0953 0.956141 10.459 3.0953 0.032307
10.459 3.0950 0.956140 10.459 3.0950 0.032307

4 Present work.

°112].

¢Not available.

aspect ratio increases, since the velocity profiles tend
towards becoming symmetric thus resulting in a near-
symmetry for the local Nusselt numbers in the ther-
mally fully developed region. It is important to note
that for case 1A, the local Nusselt number at the
inner wall is practically null in regions near the
channel entry, since for this case the inner wall tem-
perature is equal to the fluid inlet temperature, re-
sulting in heat exchanges occurring only in positions

far away from the channel entry. The same verifica-
tion is observed for the case 1B, however, for the
Nusselt number at the outer wall.

This same analysis is also verified for the case of
boundary conditions of fourth kind. A comparison of
Nusselt numbers at the inner and outer walls for cases
1A and 1B, in the thermal entry region, shows that case
1B presents greater Nusselt numbers at the inner wall.
The explanation for this fact is that the inner wall has a
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Fig. 1. Local Nusselt numbers in the thermal entry region for different values of yield numbers for the case of boundary conditions of
first kind: (a) y = 0.1; (b) y = 0.9.
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Fig. 2. Local Nusselt numbers in the thermal entry region for different values of yield numbers for the case of boundary conditions of
second kind: (a) y = 0.1; (b) y = 0.9.

smaller area, and thus, greater heat fluxes are obtained
compared with the outer wall, and consequently, as the
Nusselt numbers are directly proportional to the heat
flux, greater values are also obtained for this thermal
parameter.

The case of boundary conditions of second kind
presents a similar analysis as the third kind one. Both of
them have null local Nusselt numbers when there is no
heat flux. Once more, the symmetry in Nusselt numbers
profiles is verified for higher values of the aspect ratio,
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Fig. 3. Local Nusselt numbers in the thermal entry region for different values of yield numbers for the case of boundary conditions of
third kind: (a) y = 0.1; (b) y = 0.9.
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Fig. 4. Local Nusselt numbers in the thermal entry region for different values of yield numbers for the case of boundary conditions of
fourth kind: (a) y = 0.1; (b) y = 0.9.

such as that presented in Fig. 2(b) for an aspect ratio fourth kind, the local Nusselt numbers distributions
y = 0.9, where the Nusselt numbers distributions at the present a behavior similar to those of boundary con-
inner and outer walls corresponding to the cases 2B and ditions of first kind.

2A, respectively, present the same distribution along the Finally, it is also important to notice that for the
channel length. This fact can also be verified in Fig. 3(b) cases where constant heat fluxes at the walls (cases 2 and

for the cases 3A and 3B. For boundary conditions of the 4) were adopted as boundary conditions, greater values
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for the local Nusselt numbers were obtained compared
to the cases of prescribed wall temperatures (cases 1 and
3), as can be observed by comparing Figs. 1 and 4, or by
comparing Figs. 2 and 3, respectively.
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